线代笔记

EliorFoy Lv3

一、行列式

1.

xbbbbxbbbbxbbbbx=[x+(n1)b](xb)n1\left| \begin{matrix} x & b & b & \cdots & b \\ b & x & b & \cdots & b \\ b & b & x & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & x \end{matrix}\right| = \left\lbrack {x + \left( {n - 1}\right) b}\right\rbrack {\left( x - b\right) }^{n - 1} .
若视 xx 为变量, bb 为常数,则行列式是 xxnn 次多项式,其根是 x1=x2==xn1=b,xn=(1n)b{x}_{1} = {x}_{2} = \cdots = {x}_{n - 1} = b,{x}_{n} = \left( {1 - n}\right) b .
aaλa\lambda - a 时, λabbbbλabbbbλabbbbλan×n=[λa+(n1)b](λab)n1{\left| \begin{matrix} \lambda - a & b & b & \cdots & b \\ b & \lambda - a & b & \cdots & b \\ b & b & \lambda - a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & \lambda - a \end{matrix}\right| }_{n \times n} = \left\lbrack {\lambda - a + \left( {n - 1}\right) b}\right\rbrack {\left( \lambda - a - b\right) }^{n - 1} .
若视 λ\lambda 为变量, a,ba,b 为常数,则行列式是 λ\lambdann 次多项式,其根是 λ1=λ2==λn1=a+b,λn=a(n1)b{\lambda }_{1} = {\lambda }_{2} = \cdots = {\lambda }_{n - 1} = a + b,{\lambda }_{n} = a - \left( {n - 1}\right) b .
后续可求特征值

2.

①若行列式为 “X” 型,则
a. 主副对角线上元素相同.

ab...abba...ba2n=(a2b2)n\left| \begin{matrix} a & & & & & b \\ & \ddots & & & \kern1mu \raisebox{1pt}{.} \kern2mu \raisebox{4pt}{.} \kern2mu \raisebox{7pt}{.} \kern1mu & \\ & & a & b & & \\ & & b & a & & \\ & \kern1mu \raisebox{1pt}{.} \kern2mu \raisebox{4pt}{.} \kern2mu \raisebox{7pt}{.} \kern1mu & & & \ddots & \\ b & & & & & a \end{matrix} \right|_{2n} = (a^2 - b^2)^n

b. 主副对角线上元素不同.

a1b1...akbkbk+1ak+1...b2ka2k2k=i=1k(aia2k+1ibib2k+1i).\left| \begin{matrix} {a}_{1} & & & & & {b}_{1} \\ & \ddots & & & \kern1mu \raisebox{1pt}{.} \kern2mu \raisebox{4pt}{.} \kern2mu \raisebox{7pt}{.} \kern1mu & \\ & & {a}_{k} & {b}_{k} & & \\ & & {b}_{k + 1} & {a}_{k + 1} & & \\ & \kern1mu \raisebox{1pt}{.} \kern2mu \raisebox{4pt}{.} \kern2mu \raisebox{7pt}{.} \kern1mu & & & \ddots & \\ {b}_{2k} & & & & & {a}_{2k} \end{matrix}\right|_{2k} = \mathop{\prod }\limits_{i = 1}^{k}\left( {a}_{i}{a}_{2k + 1 - i} - {b}_{i}{b}_{2k + 1 - i}\right) .

2k=4{2k} = 4 ,即 k=2k = 2 时, D4=i=12(aia5ibib5i)=(a1a4b1b4)(a2a3b2b3){D}_{4} = \mathop{\prod }\limits_{i = 1}^{2}\left( {a}_{i}{a}_{5 - i} - {b}_{i}{b}_{5 - i}\right) = \left( {a}_{1}{a}_{4} - {b}_{1}{b}_{4}\right) \left( {a}_{2}{a}_{3} - {b}_{2}{b}_{3}\right) .
以上两个公式通常用于后续矩阵的正定问题、二次型问题,而非只用于计算行列式.
②如类对称(主对角线元素相同,左下、右上各元素相同)行列式,可通过递推法、归纳法计算.

abbcabcca={[a+(n1)b](ab)n1,b=c,b(ac)nc(ab)nbc,bc.\left| \begin{matrix} a & b & \cdots & b \\ c & a & \cdots & b \\ \vdots & \vdots & & \vdots \\ c & c & \cdots & a \end{matrix}\right| = \left\{ \begin{array}{l} \left\lbrack {a + \left( {n - 1}\right) b}\right\rbrack {\left( a - b\right) }^{n - 1},b = c, \\ \frac{b{\left( a - c\right) }^{n} - c{\left( a - b\right) }^{n}}{b - c},b \neq c. \end{array}\right.

③对于 nn 阶行列式,记 Δ=k24bc\Delta = {k}^{2} - {4bc} ,有

kbcbckn={(n+1)(k2)n,k2=4bc,(k+)n+1(k)n+12n+1,k24bc{\left| \begin{matrix} k & b & & \\ c & \ddots & \ddots & \\ & \ddots & \ddots & b \\ & & c & k \end{matrix}\right| }_{n} = \left\{ \begin{array}{l} \left( {n + 1}\right) \cdot {\left( \frac{k}{2}\right) }^{n},{k}^{2} = {4bc}, \\ \frac{\left( k + \sqrt{\bigtriangleup }\right) ^{n + 1} - {\left( k - \sqrt{\bigtriangleup }\right) }^{n + 1}}{2^{n + 1}\sqrt{\bigtriangleup }},{k}^{2} \neq {4bc} \end{array}\right.

3. 克拉默法则简单推导

如何理解克拉默法则? - 知乎
就是通过构造一个这个样的矩阵:
xi=det(100x1000x21010xi0101xn1000xn001)x_{i}=\operatorname* {d e t} \left( \begin{matrix} {1} & {0} & {\cdots} & {0} & {x_{1}} & {0} & {\cdots} & {\cdots} & {0} \\ {0} & {\ddots} & {\ddots} & {\vdots} & {x_{2}} & {\vdots} & {\vdots} & {\vdots} & {\vdots} \\ {\vdots} & {\ddots} & {1} & {0} & {\vdots} & {\vdots} & {\vdots} & {\vdots} & {\vdots} \\ {\vdots} & {\ddots} & {\ddots} & {1} & {\vdots} & {\vdots} & {\vdots} & {\vdots} & {\vdots} \\ {\vdots} & {\vdots} & {\vdots} & {0} & {x_{i}} & {0} & {\vdots} & {\vdots} & {\vdots} \\ {\vdots} & {\vdots} & {\vdots} & {\vdots} & {\vdots} & {1} & {\ddots} & {\vdots} & {\vdots} \\ {\vdots} & {\vdots} & {\vdots} & {\vdots} & {\vdots} & {0} & {1} & {\ddots} & {\vdots} \\ {\vdots} & {\vdots} & {\vdots} & {\vdots} & {x_{n-1}} & {\vdots} & {\ddots} & {\ddots} & {0} \\ {0} & {\cdots} & {\cdots} & {0} & {x_{n}} & {0} & {\cdots} & {0} & {1} \\ \end{matrix} \right)

二、矩阵

1.

(ABC)=CBA( A B C )^{\intercal}=C^{\intercal} B^{\intercal} A^{\intercal}

2. 二维下的旋转矩阵

M(θ)=[cosθsinθsinθcosθ]=cosθ[1001]+sinθ[0110]=exp(θ[0110])M ( \theta)=\left[ \begin{array} {c c} {\operatorname{c o s} \theta\,} & {\,-\, s i n \theta} \\ \\ {s i n \theta\,} & {\, \operatorname{c o s} \theta} \\ \end{array} \right]=\operatorname{c o s} \theta \left[ \begin{array} {c c} {1} & {0} \\ {\, 0 \,} & {1} \\ \end{array} \right]+\operatorname{s i n} \theta \left[ \begin{array} {c c} {0} & {\,-1 \,} \\ {\, 1} & {\, 0 \,} \\ \end{array} \right]=\operatorname{e x p} \left( \theta \left[ \begin{array} {c c} {0} & {\,-1 \,} \\ {\, 1} & {\, 0 \,} \\ \end{array} \right] \right)

[cosϕsinϕsinϕcosϕ][ρcosθρsinθ]=[ρcos(θ+ϕ)ρsin(θ+ϕ)]\left[ \begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array} \right] \begin{bmatrix} \rho\cos\theta \\ \rho\sin\theta \end{bmatrix} = \begin{bmatrix} \rho\cos(\theta+\phi) \\ \rho\sin(\theta+\phi) \end{bmatrix}

  • 标题: 线代笔记
  • 作者: EliorFoy
  • 创建于 : 2025-07-27 15:08:48
  • 更新于 : 2025-07-29 18:45:25
  • 链接: https://eliorfoy.github.io/2025/07/27/考研/数学/线代/线代笔记(Hexo发布版)/
  • 版权声明: 本文章采用 CC BY-NC-SA 4.0 进行许可。
评论